Lesson no.25

I/O Ports

There are hundreds of peripheral devices in the system, PIC is one example. The processor needs to communicate with them, give and take data from them, otherwise their presence is meaningless. Memory has a totally different purpose. It contains the program to be executed and its data. It does not control any hardware. For communicating with peripheral devices the processor uses I/O ports. There are only two operations with the external world possible, read or write. Similarly with I/O ports the processor can read or write an I/O port. When an I/O port is read or written to, the operation is not as simple as it happens in memory. Some hardware changes it functionality or performs some operation as a result.

IBM PC has separate memory address space and peripheral address space. Some processors use memory mapped I/O in which case designated memory cells work as ports for specific devices. In case of Intel a special pin on the control bus signals whether the current read or write is from the memory address space or from the peripheral address space. The same address and data buses are used to select a port and to read or write data from that port. However with I/O only the lower 16 bits of the address bus are used meaning that there are a total of 65536 possible I/O ports. Now keyboard has special I/O ports designated to it, PIC has others, DMA, sound card, network card, each has some ports.

If the two address spaces are differentiated in hardware, they must also have special instructions to select the other address space. We have the IN and OUT instructions to read or write from the peripheral address space. When MOV is given the processor selects the memory address space, when IN is given the processor selects the peripheral address space.

IN and OUT instructions

The IN and OUT instructions have a byte form and a word form but the byte form is almost always used. The source register in OUT and destination register in IN is AL or AX depending on which form is used. The port number can be directly given in the instruction if it fits in a byte otherwise it has to be given in the DX register. Port numbers for specific devices are fixed by the IBM standard. For example 20 and 21 are for PIC, 60 to 64 for Keybaord, 378 for the parallel port etc. A few example of IN and OUT are below:

in al, 0x21

mov dx, 0x378
in al, dx

out 0x21, al

mov dx, 0x378
out dx, al

PIC Ports

Programmable interrupt controller has two ports 20 and 21. Port 20 is the control port while port 20 is the interrupt mask register which can be used for selectively enabling or disabling interrupts. Each of the bits at port 21 corresponds to one of the IRQ lines. We first write a small program to disable the keyboard using this port. As we know that the keyboard IRQ is 1, we place a 1 bit at its corresponding position. A 0 bit will enable an interrupt and a 1 bit disables it. As soon as we write it on the port keyboard interrupts will stop arriving and the keyboard will effectively be disabled. Even Ctrl-Alt-Del would not work; the reset power button has to be used.

	
	Example 9.1

	001

002

003

004

005

006

007

008
	; disable keyboard interrupt in PIC mask register

[org 0x0100]

 in al, 0x21 ; read interrupt mask register
 or al, 2 ; set bit for IRQ2
 out 0x21, al ; write back mask register

 mov ax, 0x4c00 ; terminate program
 int 0x21

	
	

After this three line mini program is executed the computer will not understand anything else. Its ears are closed. No keystrokes are making their way to the processor. Ports always make something happen on the system. A properly designed system can launch a missile on writing a bit on some port. Memory is simple in that it is all that it is. In ports every bit has a meaning that changes something in the system.

As we previously discussed every interrupt handler invoked because of an IRQ must signal an EOI otherwise lower priority interrupts will remain disabled.

